Abstract
We characterize cutting sequences of infinite geodesics on square-tiled surfaces by considering interval exchanges on specially chosen intervals on the surface. These interval exchanges can be thought of as skew products over a rotation, and we convert cutting sequences to symbolic trajectories of these interval exchanges to show that special types of combinatorial lifts of Sturmian sequences completely describe all cutting sequences on a square-tiled surface. Our results extend the list of families of surfaces where cutting sequences are understood to a dense subset of the moduli space of all translation surfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.