Abstract
Human beings flying with the help of aircrafts of various kinds have been able to fly for about one century. Although the flapping wings of animals served as an inspiration to pioneers of human flight, we don't really understand how they work. In this study, we employ the concept of four-bar linkage to design a flapping mechanism which simulates a flapping motion of a bird. Wind tunnel tests were performed to measure the lift and thrust of the mechanical membrane flapping wing under different frequency, speed, and angle of attack. It is observed that the flexibility of the wing structure will affect the thrust and lift force due to its deformation at high flapping frequency. The lift force will increase with the increase of the flapping frequency under the corresponding flying speed. For the same flapping frequency, the flying speed can be increased by decrease of the angle of attack with the trade of loosing some lift force. An angle of attack is necessary in a simple flapping motion in order to derive a lift force. The flapping motion generates the thrust to acquire the flying speed. The flying speed and angle of attack combine to generate the lift force for flying.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.