Abstract

The fluid and structural response of two different membrane wing Micro Air Vehicles is studied through computation and experiment. A (three) batten-reinforced fixed wing membrane micro air vehicle is used to determine the effect of membrane prestrain and fixed angle of attack on flutter and limit cycle behavior of fixed wing membrane Micro Air Vehicles. For each configuration tested, flutter and subsequent limit cycle oscillations are measured in wind tunnel tests and predicted using an aeroelastic computational model consisting of a nonlinear finite element model coupled to a vortex lattice solution of the Laplace equation and boundary conditions. Correlation between the predicted and measured onset of limit cycle oscillation is good as is the prediction of the amplitude of the limit cycle at the trailing edge of the lower membrane. A direct correlation between levels of strain and the phase of the membranes during the limit cycle is found in the computation and thought to also occur in the experiment. The second membrane wing micro air vehicle configuration is that of a plunging membrane airfoil model. This model is studied computationally using a sixth-order finite difference solution of the Navier-Stokes equations coupled to a nonlinear string finite element model. The effect, on the structural and fluid response, of plunging Strouhal number, reduced frequency and static angle of attack is examined. At two degree angle of attack, and Strouhal number of 0.2, the effect of increasing the plunging reduced frequency is to decrease the sectional lift coefficient and increase the sectional drag coefficient. At this angle of attack, minimal change in the sectional lift coefficient is found when increasing from a Strouhal number of 0.2 to 0.5 at reduced frequencies of 0.5 and 5.903, the lowest and highest values of this parameter which are studied in this work. For this angle of attack the maximum change which occurs when increasing the Strouhal number from 0.2 to 0.5 is at a reduced frequency of 1.5. When the effect of angle of attack is studied, it is found that at a Strouhal number of 0.5 and reduced frequency of 1.5 the plunging flexible model demonstrates improved lift characteristics over the fixed flexible airfoil case. The greatest improvement occurs at an angle of attack of 2 degrees followed by 10 degrees and then 6 degrees. Finally the effect on the flow characteristics of airfoil flexibility is investigated by increasing the membrane pre-strain from a nominal value of 5 percent to that of 20 percent. This increase in pre-strain results in a reduced value of sectional lift coefficient as compared the 5 percent pre-strain case at the same fixed angle of attack, Strouhal number and reduced frequency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.