Abstract

Abstract The three-dimensional harmonic oscillator is solved in Bargmann space. The treatment is pedagogically more transparent than the standard ones, at the price of introducing the Bargmann transform in the context of the one-dimensional oscillator. The standard solid harmonics are similarly derived with minimal technical effort, amounting to a complete self-contained exposition suitable for introductory courses in quantum mechanics or mathematical methods of physics. It provides an early exposure to wavelets, with important contemporary applications in signal analysis and quantum optics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call