Abstract

We investigate the catalytic reactions model used in cell modeling. The reaction kinetics is defined through the energies of different species of molecules following a random independent distribution. The related statistical physics model has three phases and these three phases emerge in the dynamics: fast dynamics phase, slow dynamic phase and ultra-slow dynamic phase. The phenomenon we found is rather general, and does not depend on the details of the model. We assume as a hypothesis that the transition among these phases (glassiness degrees) is related to cancer. The imbalance in the rate of processes between key aspects of the cell (gene regulation, protein-protein interaction, metabolical networks) creates a change in the fine tuning among these key aspects, affects the logics of the cell and initiates cancer. It is probable that cancer is a change of phase resulting from increased and deregulated metabolic reactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.