Abstract

The kinetic mechanism of Na(+) binding to thrombin was resolved by stopped-flow measurements of intrinsic fluorescence. Na(+) binds to thrombin in a two-step mechanism with a rapid phase occurring within the dead time of the spectrometer (<0.5 ms) followed by a single-exponential slow phase whose k(obs) decreases hyperbolically with increasing [Na(+)]. The rapid phase is due to Na(+) binding to the enzyme E to generate the E:Na(+) form. The slow phase is due to the interconversion between E(*) and E, where E(*) is a form that cannot bind Na(+). Temperature studies in the range from 5 to 35 degrees C show significant enthalpy, entropy, and heat capacity changes associated with both Na(+) binding and the E to E(*) transition. As a result, under conditions of physiologic temperature and salt concentrations, the E(*) form is negligibly populated (<1%) and thrombin is almost equally partitioned between the E (40%) and E:Na(+) (60%) forms. Single-site Phe mutations of all nine Trp residues of thrombin enabled assignment of the fluorescence changes induced by Na(+) binding mainly to Trp-141 and Trp-215, and to a lesser extent to Trp-148, Trp-207, and Trp-237. However, the fast phase of fluorescence increase is influenced to different extents by all Trp residues. The distribution of these residues over the entire thrombin surface demonstrates that Na(+) binding induces long-range effects on the structure of the enzyme as a whole, contrary to the conclusions drawn from recent structural studies. These findings elucidate the mechanism of Na(+) binding to thrombin and are relevant to other clotting factors and enzymes allosterically activated by monovalent cations.

Highlights

  • The fast phase of fluorescence increase is influenced to different extents by all Trp residues

  • The kinetics of Mϩ binding to Mϩ-activated enzymes in general remain for the most part unexplored due to the difficulty of resolving rate constants for reactions that likely occur on a very fast time scale [4]

  • In the case of thrombin, earlier studies have suggested that Naϩ binds in a two-step mechanism with a fast phase occurring within the dead time of the spectrometer (2 ms), followed by a slow phase in the 30-ms time scale at 5 °C [41]

Read more

Summary

Introduction

The classification groups enzymes based on their Mϩ specificity (Naϩ or Kϩ) and the mechanism of activation, cofactor-like (Type I) or allosteric (Type II). The kinetics of Mϩ binding to Mϩ-activated enzymes in general remain for the most part unexplored due to the difficulty of resolving rate constants for reactions that likely occur on a very fast time scale [4]. In the case of thrombin, earlier studies have suggested that Naϩ binds in a two-step mechanism with a fast phase occurring within the dead time of the spectrometer (2 ms), followed by a slow phase in the 30-ms time scale at 5 °C [41]. We identify the Trp residues responsible for the spectral changes and the precise mechanism that gives rise to the two-step components of Naϩ binding

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call