Abstract
In this work, we have studied the thermodynamic properties of the Van der Waals black hole in the framework of the relativistic Kaniadakis entropy. We have shown that the black hole properties, such as the mass and temperature, differ from those obtained by using the the Boltzmann–Gibbs approach. Moreover, the deformation κ-parameter changes the behavior of the Gibbs free energy via introduced thermodynamic instabilities, whereas the emission rate is influenced by κ only at low frequencies. Nonetheless, the pressure–volume (P(V)) characteristics are found independent of κ and the entropy form, unlike in other anti-de Sitter (AdS) black hole models. In summary, the presented findings partially support the previous arguments of Gohar and Salzano that, under certain circumstances, all entropic models are equivalent and indistinguishable.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have