Abstract

Oxygen activities in liquid Cu−O and Cu−Fe−O alloys were measured in the temperature range 1100° to 1300°C by the solid oxide electrolyte emf method with mixtures of Ni−NiO and Co−CoO as reference electrodes. The Cu−O and Cu−Fe−O alloys were analyzed for iron and/or oxygen content. The activity coefficient of oxygen at infinite dilution in liquid copper was found to be 0.115, 0.195, and 0.286 at 1100°, 1200°, and 1300°C, respectively. The results are compared with previous investigations on the Cu−O system. Based on this comparison, the best equation for the free energy of solution has been suggested. The standard free energy of formation of CoO(s) has been calculated at the experimental temperatures. In the liquid Cu−Fe−O system at 1200°C, a minima in oxygen solubility is reached at 1.1 at. pct Fe in the alloy. The value of interaction coefficient,\( \in _O^{(Fe)} \), is −565 at 1200°C. Iron activities in the liquid Cu−Fe alloys have been calculated at 1100° and 1200°C, and a strong positive deviation from ideality is observed. Results of this study were combined with literature data at 1550°C to obtain the values of\(\Delta \overline G _{Fe}^{xs} \) and\(\Delta \overline S _{Fe}^{xs} \) at infinite dilution in liquid copper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.