Abstract
The eastern Officer Basin in South Australia contains a Neoproterozoic to Devonian succession overlain by relatively thin (<500 m) Permian, Mesozoic and Tertiary deposits. Within the basin fill, there are several major unconformities representing uncertain amounts of erosion. Three of these surfaces are associated with regional deformational events. Regional unconformities formed between 560 and 540 Ma (Petermann Ranges Orogeny), approximately 510–490 Ma (Delamerian Orogeny), 370–300 Ma (Alice Springs Orogeny), 260–150 Ma; and 95–40 Ma. AFTA® results from 13 samples of Neoproterozoic, Cambrian and Permian sedimentary rocks in five wells (Giles-1, Manya-2, -5 and -6 and Lake Maurice West-1) show clear evidence for a number of distinct thermal episodes. Results from all samples are consistent with cooling from the most recent thermal episode beginning at some time between 70 and 20 Ma (Maastrichtian–Miocene). AFTA results from Giles-1 indicate at least two pre-Cretaceous thermal episodes with cooling beginning between 350 and 250 Ma (Carboniferous–Permian) and between 210 and 110 Ma (Late Triassic–Albian). Results from Manya-2, -5 and -6 and Lake Maurice West-1 show evidence for at least one earlier higher temperature event, with cooling from elevated paleotemperatures beginning between 270 and 200 Ma (Late Permian to Late Triassic). These episodes can be correlated with other cooling/erosional events outside the study area, and the AFTA-derived paleotemperatures are consistent with kilometre-scale erosion for each of the episodes identified. Integration of the AFTA data with organic thermal maturation indicators (MPI) in the Manya and Giles-1 wells suggests that the Cambrian and Neoproterozoic successions in the northern part of the study area reached peak maturation prior to the Permian, while limited data from Lake Maurice West-1 allows peak maturation to have occurred as young as the Late Permian to Late Triassic thermal episode revealed by AFTA. The approach outlined in this study is relevant to all ancient basins as it emphasises the importance of understanding events associated with neighbouring regions. The thermal history of the Officer Basin, as with most other ancient basins, has been strongly affected by significant tectonic events throughout its history, even though younger deposits are not preserved in the basin itself. The recognition of these younger events, and the implications of these events for the depositional history, is important as it allows identification of the best regions for preservation of early generated hydrocarbons, and in some cases, suggests areas where generation of hydrocarbons could have occurred more recently than previously thought.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have