Abstract

New technologies known as unconventional technologies make it possible to cut complex shapes at high speed and with relatively high precision. In many cases, especially in the case of thin sheet, created parts produced do not require any further treatment by post-machining. Knowledge of the accompanying phenomena, such as the heat-affected zone (HAZ) or the surface quality of the cutting edge, is necessary, for example, to assess further machining of material in these areas (e.g. drilling and reaming holes or finishing operations on the cutting edge). In this study, the thermal effect of four unconventional cutting technologies – laser, plasma, wire electrical discharge machining (wire EDM) and waterjet cutting on the cut surface of steel sheets is investigated. Steel 1.7102 (DIN 54SiCr6) was chosen for purpose of this study. The width of the HAZ and the nanohardness beneath the cut surface were analyzed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call