Abstract
The thermal diffusivity of a series of solid solutions of alumina and chromia transformation toughened with a dispersed phase of unstabilized zirconia was measured by means of the laser-flash method from room temperature to 1400° C. It was found, in general, that the thermal diffusivity could be decreased significantly by the combined effects of solid solution alloying, microcracking and by the presence of the low conductivity dispersed phase of zirconia. The decrease in thermal diffusivity by microcracking was found to be present in the solid solution with low chromia content which underwent extensive grain growth. The effectiveness of solid solution formation and microcracking on thermal diffusivity was found to be greatest at the lower and intermediate ranges of temperature. The decrease in the thermal diffusivity due to the zirconia inclusions was found to be effective over the total temperature range. A numerical example is presented for the thermal conductivity calculated from the thermal diffusivity multiplied by the volumetric heat capacity.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have