Abstract

Geometric branch-and-bound solution methods, in particular the big square small square technique and its many generalizations, are popular solution approaches for non-convex global optimization problems. Most of these approaches differ in the lower bounds they use which have been compared empirically in a few studies. The aim of this paper is to introduce a general convergence theory which allows theoretical results about the different bounds used. To this end we introduce the concept of a bounding operation and propose a new definition of the rate of convergence for geometric branch-and-bound methods. We discuss the rate of convergence for some well-known bounding operations as well as for a new general bounding operation with an arbitrary rate of convergence. This comparison is done from a theoretical point of view. The results we present are justified by some numerical experiments using the Weber problem on the plane with some negative weights.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call