Abstract

It is shown that the uniform mean-square ergodic theorem holds for the family of wide sense stationary sequences, as soon as the random process with orthogonal increments, which corresponds to the orthogonal stochastic measure generated by means of the spectral representation theorem, is of bounded variation and uniformly continuous at zero in a mean-square sense. The converse statement is also shown to be valid, whenever the process is sufficiently rich. The method of proof relies upon the spectral representation theorem, integration by parts formula, and estimation of the asymptotic behaviour of total variation of the underlying trigonometric functions. The result extends and generalizes to provide the uniform mean-square ergodic theorem for families of wide sense stationary processes

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.