Abstract
A new method for representing and generating realizations of a wide-sense stationary non-Gaussian random process is described. The representation allows one to independently specify the power spectral density and the first-order probability density function of the random process. The only proviso is that the probability density function must be symmetric and infinitely divisible. The method proposed models the sinusoidal component frequencies as random variables, a key departure from the usual representation a of wide-sense stationary random process by the spectral theorem. Ergodicity in the mean and autocorrelation is also proven, under certain conditions. An example is given to illustrate its application to the K distribution, which is important in many physical modeling problems in radar and sonar.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.