Abstract
This study investigates the fabrication and performance of SnO2 thin films for gas sensing applications, utilizing a deposition method at 2 bar pressure and 8 ml/min flow rate. A multilayer structure was developed, comprising 14 layers, each with a thickness of 250 nm, optimized for sensitivity and stability. The gas sensor, featuring a film heater and sensitive elements doped with a 1% silicon additive, demonstrated a wide operational temperature range (20-370 °C). Characterization of resistance changes revealed significant hysteresis before isothermal annealing, with resistance values stabilizing after prolonged exposure to 370 °C. Post-annealing, the sensor exhibited three orders of magnitude higher resistance, indicating improved stability and electronic transport properties. Doping with a 1N AgNO3 solution significantly enhanced sensitivity to ammonia, with a detection threshold of 500 ppm, while sensitivity to alcohol vapors decreased, indicating selectivity. Experimental results confirm that local doping and thermal treatment effectively enhance the metrological characteristics of SnO2-based sensors, making them suitable for detecting toxic gases.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have