Abstract

In this study, the effects of recycled tire rubbers (RTR) and steel fiber (SF) on the fresh and hardened state properties of the self-compacted alkali activated concrete (SCAAC) were investigated. The ground granulated blast furnace slag, 1 % hooked-end SF, and two types of RTR were utilized. The crumb rubbers (CR) and tire rubber chips (TCR) were used as a substation to natural aggregates at substation levels of 10 % and 15 %. The fresh state performances were evaluated by T50 value, slump flow, V-funnel, and L-Box tests, while mechanical performances were assessed through compressive, flexural, and splitting tensile strength tests. Also, detailed crack and microstructural analyses were conducted. The RTR adversely affected the fresh state properties, which reduced more with SF inclusions. Among the RTR, the TR specimens exhibited lower fresh state performance than the CR specimens. Similar mechanical strengths were obtained on the TR and CR specimens under the same replacement ratios. However, TR specimens exhibited higher deformation capacities than the CR specimens, when SF was utilized. The SCAAC specimens with 1 % SF and 15 % RTR showed more and wider flexural cracks, higher mechanical strength, and deformation capacity, which can be utilized in structural applications, particularly in high seismic zones.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.