Abstract

Animal models of Alzheimer's Disease (AD) are attractive tools for preclinical, prodromal drug testing. The TgF344-AD (Tg) rat exhibits cognitive deficits and 5 major hallmarks of AD. Here we show that spatial water maze (WMZ) memory deficits and proteomic differences in dorsal CA1 were present in young Tg rats. Aged learning-unimpaired (AU) and aged learning-impaired (AI) proteome associated changes were identified and differed by sex. Levels of phosphorylated tau, reactive astrocytes and microglia were significantly increased in aged Tg rats and correlated with the WMZ learning index (LI); in contrast, no significant correlation was present between amyloid plaques or insoluble Aβ levels and LI. Neuroinflammatory markers were also significantly correlated with LI and increased in female Tg rats. The anti-inflammatory marker, triggering receptor expressed on myeloid cells-2 (TREM2), was significantly reduced in aged impaired Tg rats and correlated with LI. Identifying and understanding mechanisms that allow for healthy aging by overcoming genetic drivers for AD, and/or promoting drivers for successful aging, are important for developing successful therapeutics against AD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.