Abstract
Remote sensing technology is an essential tool for tracking human-induced alterations on the water cycle, among which irrigation prevails. The possibility of obtaining detailed and accurate information on the actual irrigation extent through remote-sensing-based approaches is of paramount importance for water resources management. In this study, an update of the TSIMAP (Temporal-Stability-derived Irrigation MAPping) method, originally developed with satellite soil moisture as an input, is proposed. To demonstrate that the flexibility of the approach does not affect its main strength point (i.e., good accuracy in the face of high simplicity for users), a dual analysis relying on 1 km NDVI (Normalised Difference Vegetation Index) instead of soil moisture is carried out over the Ebro basin (Spain); data delivered by the Copernicus Global Land Service (CGLS) are used. First, results of this work are compared with outcomes from the method’s original implementation obtained over a focus area (denominated “Ebro_CATAR”) through satellite soil moisture. In the proposed configuration relying on NDVI, an overall accuracy (OA) up to 93% is found. Results highlight an increase in OA ranging from +2% to +6% depending on the validation strategy with respect to the TSIMAP implementation relying on soil moisture. Then, a basin-scale application is performed, providing performances still satisfactory (OA = 75%) notwithstanding a higher degree of heterogeneity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.