Abstract

Understanding the temporal and spatial characteristics of carbon dioxide (CO2) emissions from municipal solid waste (MSW) and a quantitative evaluation of the contribution rate of the factors influencing the changes in CO2 emissions are important for pollution and emission reduction and the realization of the "double carbon" goal. This study analyzed the spatial and temporal evolution of waste generation and treatment based on panel data from 31 Chinese provinces over the past 15years and then applied the logarithmic mean Divisia index (LMDI) model to study the driving factors of CO2 emissions from MSW. China's MSW production and CO2 emissions displayed a rising trend, and the overall CO2 emissions showed a geographical pattern of being high in the east and low in the west. Carbon emission intensity, economic output, urbanization level, and population size were positive factors that increased CO2 emissions. The most important factors driving CO2 emissions were carbon emission intensity and economic output, with cumulative contribution rates of 55.29% and 47.91%, respectively. Solid waste emission intensity was a negative factor in reducing CO2 emissions, with a cumulative contribution rate of -24.52%. These results have important implications for the design of policies to reduce CO2 emissions from MSW.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.