Abstract
HypothesisBiphilic surfaces, namely surfaces comprising hydrophilic areas with a (super)hydrophobic background, are used in nature and engineering for controlled dropwise condensation and liquid transport. These, however, are highly dependent on the surface temperature and subcooling. ExperimentsHere, biphilic surfaces were cooled inside a rotatable environmental chamber under controlled humidity. The condensation dynamics on the surface was quantified, depending on the subcooling, and compared to uniform superhydrophobic (USH) surfaces. Rates of condensation and transport were analyzed in terms of droplet number and size, covered area and fluid volume over several length scales. Specifically, from microscale condensation to macroscale droplet roll-off. FindingsFour phases of condensation were identified: a) initial nucleation, b) droplets on single patches, c) droplets covering adjacent patches and d) multi-patch droplets. Only the latter become mobile and roll off the surface. Cooling the surface to temperatures between T = 2–16 °C shows that lowering the temperature shortens some of the condensation parameters linearly, while others follow a power law, as expected from the theory of condensation. The temperature dependent condensation dynamics on (super)biphilic surfaces is faster in comparison to uniform superhydrophobic surfaces. Nevertheless, within time intervals of a few hours, droplets are mostly immobile. This sets guiding lines for using biphilic surfaces in applications such as water collection, heat transfer and separation processes. Generally, biphilic surfaces are suitable for applications in which fluids should be collected, concentrated and immobilized in specific areas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.