Abstract

When commercial 316L stainless steel specimens are heat-treated in a single phase state at 1 100°C, abnormal grain growth (AGG) occurs and some grain boundaries are observed to be faceted with hill-and-valley structures in transmission electron microscopy. Some segments of these faceted grain boundaries are expected to be singular. When heat-treated at 1 300°C normal grain growth occurs with all grain boundaries smoothly curved. These grain boundaries are expected to be atomically rough. At 1 200°C AGG still occurs but there is no excessively large grain as in the specimen heat-treated at 1 100°C. This correlation between the grain boundary structure and grain growth is consistent with those observed previously in pure metals, oxides, and a single phase model alloy. The occurrence of AGG with faceted grain boundaries is attributed to grain boundary movement with boundary steps either produced by two-dimensional nucleation or existing at the junctions with dislocations. As the grain boundaries become rough at 1 300°C normal growth occurs because the grain boundaries migrate continuously with their rate expected to increase linearly with the driving force arising from the size difference. If a specimen heat-treated at 1 100°C is further heattreated at 1 300°C, the AGG mode appears to switch to normal growth.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call