Abstract

When polycrystalline pure Ag specimens are compressed to 40 pct and annealed, there is no noticeable texture in the recrystallized structure, and normal or abnormal grain growth occurs during annealing. When annealed further in low vacuum (10−3 to 10−4 Torr) after the completion of recrystallization, normal grain growth occurs at 920 °C and 800 °C, but abnormal grain growth (AGG) occurs at 700 °C, 600 °C, and 500 °C. When annealed in O2 atmosphere, normal grain growth occurs at 920 °C and AGG at 800 °C, 700 °C, 600 °C, and 500 °C. At temperatures close to the melting point (960.5 °C), the grain boundaries are expected to be rough at atomic scales and hence have nearly isotropic boundary energy. The normal growth of the grains with such atomically rough boundary structures is consistent with some theoretical analysis and simulation. At low temperatures, the grain boundaries can be faceted with probably singular structures. Because these grain boundaries apparently migrate by the movement of boundary steps, AGG occurs. The observations with optical microscopy indeed indicate that some grain boundaries are faceted at low temperatures and all of them are smoothly curved indicating an atomically rough structure at high temperatures close to the melting point. Although the results are not conclusive, they support the hypothesis that AGG occurs because the faceted singular grain boundaries migrate by the step mechanism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call