Abstract

The author developed a GaAs wideband IQ modulator IC, which is utilized in RF signal source instruments with direct-conversion architecture. The layout is fully symmetric to obtain a temperature-stable operation. However, thee actual temperature drift of EVM (Error Vector Magnitude) is greater in some frequency and temperature ranges than the first generation IC of the same architecture. For applications requiring the precision of electric instrumentation, temperature drift is highly critical. This paper clarifies that linear phase error is the dominant factor causing the temperature drift. It also identifies that such temperature drift of linear phase error is due to equivalent series impedance, especially parasitic capacitance of the phase shifter. This effect is verified by comparing the SSB measurements to a mathematical simulation using an empirical temperature-dependent small-signal FET model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.