Abstract

The telomere-ending binding protein complex CST (Cdc13-Stn1-Ten1) mediates critical functions in both telomere protection and replication. We devised a co-expression and affinity purification strategy for isolating large quantities of the complete Candida glabrata CST complex. The complex was found to exhibit a 2∶4∶2 or 2∶6∶2 stoichiometry as judged by the ratio of the subunits and the native size of the complex. Stn1, but not Ten1 alone, can directly and stably interact with Cdc13. In gel mobility shift assays, both Cdc13 and CST manifested high-affinity and sequence-specific binding to the cognate telomeric repeats. Single molecule FRET-based analysis indicates that Cdc13 and CST can bind and unfold higher order G-tail structures. The protein and the complex can also interact with non-telomeric DNA in the absence of high-affinity target sites. Comparison of the DNA–protein complexes formed by Cdc13 and CST suggests that the latter can occupy a longer DNA target site and that Stn1 and Ten1 may contact DNA directly in the full CST–DNA assembly. Both Stn1 and Ten1 can be cross-linked to photo-reactive telomeric DNA. Mutating residues on the putative DNA–binding surface of Candida albicans Stn1 OB fold domain caused a reduction in its crosslinking efficiency in vitro and engendered long and heterogeneous telomeres in vivo, indicating that the DNA–binding activity of Stn1 is required for telomere protection. Our data provide insights on the assembly and mechanisms of CST, and our robust reconstitution system will facilitate future biochemical analysis of this important complex.

Highlights

  • The special nucleoprotein structures located at the ends of linear eukaryotic chromosomes, known as telomeres, are critical for chromosome stability; they protect the terminal DNAs from degradation, end-to-end fusion, and other abnormal transactions [1,2,3]

  • The most distal portion of a telomere is bound by the CST (Cdc13-Stn1-Ten1) complex, which is critical for telomere protection

  • By preparing and analyzing large quantities of the CST complex derived from a fungus called Candida glabrata, we showed that CST has an intricate arrangement and each complex probably contains 2, 4, and 2 copies of the Cdc13, Stn1, and Ten1 protein, respectively

Read more

Summary

Introduction

The special nucleoprotein structures located at the ends of linear eukaryotic chromosomes, known as telomeres, are critical for chromosome stability; they protect the terminal DNAs from degradation, end-to-end fusion, and other abnormal transactions [1,2,3]. The G-tails of budding yeast are bound by CST (Cdc13-Stn1-Ten1), a complex that is critical for both telomere protection and replication [4,5,6,7]. A Stn homologue named Verrocchio is known to be critical for telomere stability in Drosophila, an organism that utilizes retrotransposons rather than short repeats to cap chromosome ends [12,13]. CST components appear to be universally present and involved in telomere regulation. In support of this idea, the human CST complex was recently shown to regulate telomerase activity, telomere replication, and telomere C-strand synthesis [14,15,16,17]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call