Abstract

ABSTRACT We report European Very Long Baseline Interferometry Network (EVN) radio continuum observations of ASASSN-14li, one of the best studied tidal disruption events (TDEs) to date. At 1.7 GHz with ≃12 × 6 mas resolution, the emission is unresolved. At 5.0 GHz with ≃3 × 2 mas resolution, the radio emission shows an extended structure that can be modeled with two components: a core-like component and a fainter, possibly elongated source 4.3 mas (∼2 pc) away. Our observations are not conclusive as to the nature of the components, but three scenarios are discussed. One possibility is a core-jet/outflow morphology, thus making of ASASSN-14li the first TDE jet/outflow directly imaged. For this case, the projected separation between the two components can only be explained by superluminal motion, rather than the lower velocities inferred from low-resolution radio observations. However, typical fast moving jets have brightness temperatures ∼5 orders of magnitude higher than we find, thus making this scenario less likely. The second possibility is that we are imaging a non-relativistic jet from past AGN/TDE activity. In this case a past TDE is preferred given that the spatial extension and radio luminosity of the elongated component are consistent with the theoretical predictions for a TDE outflow. Alternatively, the two sources could indicate the presence of a binary black hole, which would then naturally explain the enhanced TDE rates of post-starburst galaxies. Future EVN observations will help us to distinguish between these scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.