Abstract
Most tidal disruption events (TDEs) are currently found in time-domain optical and soft X-ray surveys, both of which are prone to significant obscuration. The infrared (IR), however, is a powerful probe of dust-enshrouded environments; hence, we recently performed a systematic search of NEOWISE mid-IR data for nearby, obscured TDEs within roughly 200 Mpc. We identified 18 TDE candidates in galactic nuclei, using difference imaging to uncover nuclear variability among significant host galaxy emission. These candidates were selected based on the following IR light-curve properties: (1) L W2 ≳ 1042 erg s−1 at peak; (2) fast rise, followed by a slow, monotonic decline; (3) no significant prior variability; and (4) no evidence for active galactic nucleus (AGN) activity in Wide-field Infrared Survey Explorer (WISE) colors. The majority of these sources showed no variable optical counterpart, suggesting that optical surveys indeed miss numerous obscured TDEs. Using narrow-line ionization levels and variability arguments, we identified six sources as possible underlying AGN, yielding a total of 12 TDEs in our gold sample. This gold sample yields a lower limit on the IR-selected TDE rate of (2.0 ± 0.3) × 10−5 galaxy−1 yr−1 ((1.3 ± 0.2) × 10−7 Mpc−3 yr−1), which is comparable to optical and X-ray TDE rates. The IR-selected TDE host galaxies do not show a green valley overdensity nor as a preference for quiescent, Balmer strong galaxies, which are both overrepresented in optical and X-ray TDE samples. This IR-selected sample represents a new population of dusty TDEs that have historically been missed by optical and X-ray surveys and helps alleviate tensions between observed and theoretical TDE rates and the so-called missing energy problem.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.