Abstract
Listeria monocytogenes, a foodborne pathogenic bacterium, remains a serious public health concern due to its frequent occurrence in food products coupled with a high mortality rate. Bacterial pathogenicity depends greatly on the ability to secrete virulence factors to or beyond the bacterial cell surface. The Tat pathway, one of the secretion systems present in L. monocytogenes, was until now only investigated in silico. In L. monocytogenes strain EGDe two genes constitute this pathway, tatC(lmo0361) and tatA(lmo0362). Here we show that tatC and tatA are cotranscribed in a bicistronic- and growth-phase-dependent manner, being downregulated in the stationary phase. An EGDe tatAC mutant strain (EGDe ΔtatAC) was constructed, confirming that the Tat pathway is not essential for L.monocytogenes survival or biofilm-forming ability. When compared to the wild-type EGDe, deletion of tatAC did not decrease the virulence potential of EGDe ΔtatAC in HT-29 human epithelial cell line and even increased (p < 0.05) the virulence potential for mice. Moreover, we show that tat genes are prevalent in L. monocytogenes strains belonging to genetic lineage II and are generally absent from lineage I, which is more associated with human cases, thus excluding the possibility of using the Tat system as a target for novel antimicrobial compounds targeting L.monocytogenes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.