Abstract

We aimed to design and synthesize a new macromolecule for sentinel node detection to improve the imaging quality and avoid possible adverse effect. The imaging of sentinel lymph node has been an important field in the nuclear medicine. A lot of imaging agents have been developed, including Tc-sulfer colloid, Tc-labeled dextrans and the latest Tc-DTPA-mannosyl-dextran. With the technology advanced, the imaging ability of the agents has been better and better. However, there are still some drawbacks. The new macromolecule agent was based on the dextran macromolecule backbone. Then the gly-gly-gly and mannose molecules were conjugated onto the backbone proportionally by targeting two different reaction sites. Once the new macromolecule was labelled with Tc, its imaging ability was tested by single-photon emission computed tomography scanning with Tc-sulfur colloid as the comparison. The average numbers of gly-gyl-gyl and mannosyl groups on the dextran backbone are determined to be ∼1: 2 per dextran. The average molecular diameter and molecular weight are measured to be 5.4±0.7 nm and 10 324 g/mol, respectively. The macromolecule is labelled by Tc with 93.2±2.4% radiochemical yield. The lymphatic imaging by single-photon emission computed tomography with the labeled compound showed no worse imaging ability but cost less time than the commercially available Tc-sulfur colloid. A new macromolecule imaging agent for sentinel node detection has been synthesized with better imaging ability and less imaging time cost.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call