Abstract
Every finite group G acts as an automorphism group of some non-orientable Klein surfaces without boundary. The minimal genus of these surfaces is called the symmetric cross-cap number and denoted by $\tilde{\sigma}(G)$. This number is related to other parameters defined on surfaces as the symmetric genus and the strong symmetric genus.The systematic study of the symmetric cross-cap number was begun by C. L. May, who also calculated it for certain finite groups. Here we obtain the symmetric cross-cap number for the groups Cm × Dn. As an application of this result, we obtain arithmetic sequences of integers which are the symmetric cross-cap number of some group. Finally, we recall the several different genera of the groups Cm × Dn.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society of Edinburgh: Section A Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.