Abstract

AbstractLet G be a finite group. The symmetric genus σ(G) is the minimum genus of any Riemann surface on which G acts faithfully. We show that if G is a group of order 2m that has symmetric genus congruent to 3 (mod 4), then either G has exponent 2m−3 and a dihedral subgroup of index 4 or else the exponent of G is 2m−2. We then prove that there are at most 52 isomorphism types of these 2-groups; this bound is independent of the size of the 2-group G. A consequence of this bound is that almost all positive integers that are the symmetric genus of a 2-group are congruent to 1 (mod 4).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.