Abstract

A novel Self‐assembled Monolayer (SAM) forming molecule bisjulolidyldisulfide (9,9'‐disulfanediylbis(2,3,6,7‐tetrahydro‐1H,5H‐pyrido[3,2,1‐ij]quinoline)) is demonstrated which lowers the work function of metal surfaces by ≈1.2 eV and can be deposited in a 1 min process. Bisjulolidyldisulfide exists in a stable disulfide configuration prior to surface exposure and can therefore be stored, handled, and processed in ambient conditions. SAM from bisjulolidyldisulfide are deposited on metal surfaces (Au and Ag), including inkjet printed Ag on polyethylene terephthalate substrates, investigated by photoelectron and infrared spectroscopy, and used as electrodes in n‐type organic field effect transistor (OFET). Treatment of electrodes in OFET devices with with bisjulolidyldisulfide‐SAMs reduces the contact resistance by two orders of magnitude and improves shelf life with respect to pristine metal electrodes. The presented treatment also increases the surfaces wettability and thereby facilitates solution processing of a subsequent layer. These beneficial properties for device performance, processing, and stability, combined with ease of preparation and handling, render this SAM‐forming molecule an excellent candidate for the high‐throughput production of flexible electronic devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call