Abstract
LEIS depth profiles, obtained by low energy (0.5 keV) Ar+ sputtering, have been analysed for the mixed conducting oxide material La0.6Sr0.4Co0.2Fe0.8O3-δ. Samples have been examined after differing thermal treatments to examine the sub-surface reorganisation of the cation species. The profiles have shown considerable changes, but these are not strongly correlated with the thermal treatments. The similarity between the profiles suggests that preferential sputtering effects can dominate the sub-surface region (~1–3 nm) where sputtering has not reached equilibrium. Preferential sputtering of oxygen in oxide materials is well known, but here we provide evidence of the preferential sputtering of the cationic species in a complex multicomponent oxide. Of note is strong enrichment (~30%) of the sputtered surface with the heaviest of the elements, La. Simulations using the code TRIDYN have confirmed the observations, in particular, La surface enrichment and the fluence needed to achieve steady state sputtering of > 3 × 1016cm−2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.