Abstract
The relativistic continuum Hartree-Bogoliubov (RCHB) theory, which is the extension of the relativistic mean field and the Bogoliubov transformation in the coordinate representation, has been used to study tin isotopes. The pairing correlation is taken into account by a density-dependent force of zero range. The RCHB theory is used to describe the even-even tin isotopes all the way from the proton drip line to the neutron drip line. The contribution of the continuum which is important for nuclei near the drip-line has been taken into account. The theoretical S 2 n as well as the neutron, proton, and matter rms radii are presented and compared with the experimental values where they exist. The change of the potential surface with the neutron number has been investigated. The diffuseness of the potentials in tin isotopes is analyzed through the spin-orbital splitting in order to provide new way to understand the halo phenomena in exotic nuclei. The systematic of the isospin and energy dependence of these results are extracted and analyzed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.