Abstract

The surface behavior of ZnO-based films can be modulated via the postannealing and ultraviolet (UV) illumination of different strengths and durations, respectively. The present results could provide the basis for modulating their microstructures with respect to the grain-size distribution and photocatalytic behavior, and act as a potential guide in the field of wide-bandgap semiconducting oxides. ZnO films were prepared at room temperature onto Corning-1737 glass substrates by applying radio-frequency magnetron sputtering without supplying an oxygen source. With the purpose of obtaining modulational grain microstructures, the as-prepared ZnO films (Z0) were treated via a postannealing modification in a vacuum furnace at 300 °C for 30 min after deposition (Z300), accompanied by adjustable internal stress. The contact angle (CA) value of the ZnO films was reduced from 95° to 68°, owing to the different grain microstructure accompanied by a change in the size variation. In addition, UV light with different illumination strengths could be used to improve the hydrophilicity, which varied from a hydrophobic status to a superhydrophilic status due to the desirable surface characteristics of its photocatalytic action. In addition, the photocatalytic activity of the ZnO films exhibited an effectual photodegradation of methylene blue (MB) under UV illumination, with a chemical reaction constant of 2.93 × 10−3 min−1. In this present work, we demonstrated that the CA value of the ZnO films not only caused a change from a hydrophobic to hydrophilic status, accompanied by a change in grain size combined with internal stress, but also, induced by the UV light illumination, was combined with photocatalytic activity simultaneously. On the other hand, an enhanced surface plasmonic resonance was observed, which was due to couple oscillations between the electrons and photons and was generated from the interface by using a flat, continuous Pt capping nanolayer. This designed structure may also be considered as a Pt electrode pattern onto ZnO (metal Pt/ceramic ZnO) for multifunctional, heterostructured sensors and devices in the near future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call