Abstract

To assess the effectiveness and efficiency of ultraviolet (UV) illumination compared to conventional white light in the detection of fluorescent-tagged adhesive remnants during orthodontic debonding. Orthodontic brackets were bonded to extracted human premolars using one of two bonding resins having fluorescent properties (Pad Lock, Reliance Orthodontics, Itasca, Ill; Opal Bond MV, Opal Orthodontics, South Jordan, Utah; n = 40 each). The brackets were then debonded and, in each adhesive group, half the teeth had the remaining adhesive resin removed under illumination using the operatory light and the other half using a UV (395 nm) light emitting diode (LED) flashlight (n = 20/group). Time for teeth cleanup was recorded. Follow-up images were obtained under a dissecting microscope using UV illumination, and the surface area of adhesive remnants was calculated. Effectiveness of adhesive removal was also assessed using scanning electron microscopy imaging. Analysis of variance and Kruskal-Wallis tests were used to analyze time and adhesive remnants, respectively. Assessment using the dissecting microscope found groups using UV light during adhesive removal had statistically significantly lower amounts of adhesive remnants than groups using white light (P ≤ .01). Time for adhesive removal was significantly lower with Opal Bond MV adhesive using UV light when compared with the white light (P ≤ .01). Assessment by scanning electron microscopy showed that thin remnants of adhesive (<2 μm) remained undetected by UV illumination. UV light is more effective and tends to be more efficient than white light in the detection of fluorescent adhesive during orthodontic debonding. Although there are limitations, the use of UV LED lighting is a practical tool that aids in adhesive detection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call