Abstract

Cycloparaphenylenes (CPPs) and their analogs have recently attracted much attention due to their aesthetical structures and optoelectronic properties with radial π-conjugation systems. The past 10 years have witnessed a remarkable advancement in CPPs research, from synthetic methodology to optoelectronic investigations. In this present minireview, we highlight the supramolecular chemistry of CPPs and their analogs, mainly focusing on the size-selective encapsulation of fullerenes, endohedral metallofullerenes, and small molecules by these hoop-shaped macrocycles. We will also discuss the assembly of molecular bearings using some belt-persistent tubular cycloarylene molecules and fullerenes, photoinduced electron transfer properties in supramolecular systems containing carbon nanohoop hosts and fullerene guests, as well as the shape recognition properties for structure self-sorting by using dumbbell-shaped dimer of [60]fullerene ligand. Besides, the supramolecular complexes with guest molecules other than fullerenes, such as CPPs themselves, iodine, pyridinium cations, and bowl-shaped corannulene, are also discussed.

Highlights

  • Supramolecular chemistry is the subject of the association of two or more chemical species held together by intermolecular forces, such as electrostatic interactions, hydrogen bonding, van der Waals forces, etc., which could lead to organized entities of higher complexity (Lehn, 1985, 1988)

  • We will discuss the assembly of molecular bearings using some belt-persistent tubular cycloarylene molecules and fullerenes, photoinduced electron transfer properties in supramolecular systems containing carbon nanohoop hosts and fullerene guests, as well as the shape recognition properties for structure self-sorting by using dumbbell-shaped dimer of [60]fullerene ligand

  • Supramolecular chemistry is the subject of the association of two or more chemical species held together by intermolecular forces, such as electrostatic interactions, hydrogen bonding, van der Waals forces, etc., which could lead to organized entities of higher complexity (Lehn, 1985, 1988)

Read more

Summary

The Supramolecular Chemistry of Cycloparaphenylenes and Their Analogs

Dapeng Lu 1*, Qiang Huang 2, Shengda Wang 2, Jinyi Wang 2, Pingsen Huang 2 and Pingwu Du 2*. The past 10 years have witnessed a remarkable advancement in CPPs research, from synthetic methodology to optoelectronic investigations. In this present minireview, we highlight the supramolecular chemistry of CPPs and their analogs, mainly focusing on the size-selective encapsulation of fullerenes, endohedral metallofullerenes, and small molecules by these hoop-shaped macrocycles. We will discuss the assembly of molecular bearings using some belt-persistent tubular cycloarylene molecules and fullerenes, photoinduced electron transfer properties in supramolecular systems containing carbon nanohoop hosts and fullerene guests, as well as the shape recognition properties for structure self-sorting by using dumbbell-shaped dimer of [60]fullerene ligand. The supramolecular complexes with guest molecules other than fullerenes, such as CPPs themselves, iodine, pyridinium cations, and bowl-shaped corannulene, are discussed

INTRODUCTION
Supramolecular Chemistry of Molecular Nanohoops
SUPRAMOLECULAR COMPLEXES CONSISTING OF CPPS AND FULLERENES
SUMMARY AND OUTLOOK
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call