Abstract
[n]Cycloparaphenylenes ([n]CPPs) with n=5, 8, 10 and 12 and their noncovalent ring‐in‐ring and [m]fullerene‐in‐ring complexes with m=60, 70 and 84 have been studied by direct and matrix‐assisted laser desorption ionization ((MA)LDI) and density‐functional theory (DFT). LDI is introduced as a straightforward approach for the sensitive analysis of CPPs, free from unwanted decomposition and without the need of a matrix. The ring‐in‐ring system of [[10]CPP⊃[5]CPP]+. was studied in positive‐ion MALDI. Fragmentation and DFT indicate that the positive charge is exclusively located on the inner ring, while in [[10]CPP⊃C60]+. it is located solely on the outer nanohoop. Positive‐ion MALDI is introduced as a new sensitive method for analysis of CPP⊃fullerene complexes, enabling the detection of novel complexes [[12]CPP⊃C60, 70 and 84]+. and [[10]CPP⊃C84]+.. Selective binding can be observed when mixing one fullerene with two CPPs or vice versa, reflecting ideal size requirements for efficient complex formation. Geometries, binding and fragmentation energies of CPP⊃fullerene complexes from DFT calculations explain the observed fragmentation behavior.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.