Abstract
ABSTRACT This paper portrays the solution-phase dynamics as copper(II) and ethylenediamine explore a multitude of different complexes. The data from five spectrophotometric titrations were globally analysed, evidencing four predominant species ([Cu]2+, [Cu(en-N,N’)]2+, [Cu(en-N,N’)2]2+, [Cu(en-N)4]2+) along with their molar absorptivity curves and associative binding constants. The data also seem to support a fifth species, [Cu2(µ-en-N,N’)]4+, in which ethylenediamine bridges two Cu(II) centres. The thermodynamic stability of all five species is corroborated by ab initio computational calculations. The potential existence of [Cu(en-N)4]2+ highlights the suprachelate effect – going beyond the chelate effect – where multidenticity is overtaken by monodenticity. Such dangling multidentate ligands are available to bind to additional metal centres and thus build towards self-assembling supramolecules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.