Abstract
In hydrological research, accurate rainfall data is the primary subject for the minimization of potential loss of life and property that is mainly caused by floods. However, there is a difficulty in getting precise rainfall data for poorly gauged locations, especially in mountainous areas. Weather radar instruments can be the remedy accompanied by some errors. And, these errors should be removed before the implementation of this product. This paper presents the results of the research on radar rainfall estimate errors with support vector regression (SVR) method using the observed rain gauge data. The paper depicts the methodological base of the algorithm that covers additive and multiplicative corrections and the results of practical implementations considering the locations of gauge measurements. The preliminary results show that the SVR has a location-oriented performance. The multiplicative and additive correction factors show decreasing and polynomial trends respectively, as the distance from the radar location increase. Another particular outcome is that the SVR shows better results for the stations located in the mid-range (mainly for 40-60 km) contrary to the nearest ones. Since the systematic error in the radar data is nonlinear, the SVR method would show a promising result with a combination of other optimization techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.