Abstract

Human leukocyte elastase (HLE) and cathepsin G (CG) are expressed at high levels on the surface of activated human neutrophils (PMN) in catalytically active but inhibitor-resistant forms having the potential to contribute to tissue injury. Herein we have investigated the mechanisms by which HLE and CG bind to PMN plasma membranes. (125)I-Labeled HLE and CG bind to PMN at 0 degrees C in a saturable and reversible manner (K(D) = 5.38 and 4.36 x 10(-7) m and 11.5 and 8.1 x 10(6) binding sites/cell, respectively). Incubation of PMN with radiolabeled HLE and CG in the presence of a 200-fold molar excess of unlabeled HLE, CG, myeloperoxidase, lactoferrin, proteinase 3, phenylmethylsulfonyl fluoride (PMSF)-inactivated HLE, or PMSF-inactivated CG inhibited binding of radiolabeled ligands. This indicates that these PMN granule proteins share binding sites on PMN and that functional active sites of HLE and CG are not required for their binding to PMN. The sulfate groups of heparan sulfate- and chondroitin sulfate-containing proteoglycans are the PMN binding sites for HLE and CG since binding of HLE and CG to PMN was inhibited by incubating PMN with 1) trypsin, chondroitinase ABC, and heparitinases, but not other glycanases, and 2) purified chondroitin sulfates, heparan sulfate, and other sulfated molecules, but not with non-sulfated glycans. Thus, heparan sulfate- and chondroitin sulfate-containing proteoglycans are low affinity, high volume PMN surface binding sites for HLE and CG, which are well suited to bind high concentrations of active serine proteinases released from degranulating PMN.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.