Abstract

Abstract This study, the first part of a two-part series, develops the method of “successive orders of interaction” (SOI) for a computationally efficient and accurate solution for radiative transfer in the microwave spectral region. The SOI method is an iterative approximation to the traditional adding and doubling method for radiative transfer. Results indicate that the approximations made in the SOI method are accurate for atmospheric layers with scattering properties typical of those in the infrared and microwave regions. In addition, an acceleration technique is demonstrated that extends the applicability of the SOI approach to atmospheres with greater amounts of scattering. A comparison of the SOI model with a full Monte Carlo model using the atmospheric profiles given by Smith et al. was used to determine the optimal parameters for the simulation of microwave top-of-atmosphere radiances. This analysis indicated that a four-stream model with a maximum initial-layer optical thickness of approximately 0.01 was optimal. In the second part of this series, the accuracies of the SOI model and its adjoint are demonstrated over a wide range of microwave remote sensing scenarios.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call