Abstract

Southern Kyushu, Japan, includes a chain of large and small calderas and active volcanoes, and the greatest part of it is covered with thick pyroclastic ejecta. The regional and local structures of this area are discussed from the standpoint of physical volcanology, with consideration of all available data. The regional structure of this area is examined in the light of gravity and geomagnetic anomalies. Two layers of the earth's uppermost crust are defined by spectrum analysis of the gravity anomalies. These two layers are identical with the two identified by seismicwave velocities. The Bouguer gravity anomalies are relatively high and rather monotonous over outcrops of the Mesozoic basement and the granite, but are relatively low and perturbed over calderas and caldera-like structures. Two low-gravity anomalies in Kagoshima Bay are remarkable. One is circular, with its center on the Aira caldera. The other is elongated between the Satsuma and Oosumi peninsulas. The southern end of the latter anomaly is occupied by the Ata caldera. Discussion of the gravity anomalies of the Aira caldera suggests that the subsurface basement has a funnel shape and is overlain by ‘fallback’. The sub bottom geology of the caldera suggests that it is formed by a few smaller depressions, though the distribution of the overall gravity anomalies is parallel with its shape. The southern part of Kagoshima Bay is characterized by a graben-like topography and low-gravity anomalies and, moreover, by several calderas. The middle part, between the Aira and Ata calderas, may have a graben-like structure. A profile crossing the bay through Sakurajima volcano is modeled on the basis of results from drilling and gravity surveys. The basement has a graben-like structure and is filled with coarse and low-density deposits, and the structure continues northwards to the Aira caldera with a funnel shape. A comparison of this area with the Taupo-Rotorua depression in New Zealand and Lake Toba in Indonesia, leads the authors to the conclusion that such major volcanic depressions may have been formed by amalgamation of a series of caldera-like structures which were formed by multiple violent explosions accompanied by ejection of a tremendous amount of pyroclastic material.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call