Abstract
This study determines synaptic and intrinsic alterations of subicular pyramidal cells that are associated with activity recorded in patients suffering from temporal lobe epilepsy. Electroencephalograms with sphenoidal electrodes were correlated with in vitro single cell recordings of subicular pyramidal cells from the corresponding resected epileptic tissue. We determined alterations of synaptic and intrinsic properties of subicular pyramidal cells that accompany spontaneous rhythmic activity in human sclerotic and nonsclerotic epileptic tissue. We found that in sclerotic, but also in nonsclerotic hippocampal tissue, the subiculum showed cellular and synaptic changes that were associated with spontaneous rhythmic activity correlated to the occurrence and frequency of interictal discharges recorded in the electroencephalograms of the corresponding patients. Even though Ammon's horn sclerosis (AHS) in resected hippocampi from patients suffering from temporal lobe epilepsy has important prognostic implications for freedom from seizures postoperatively, we report here that both synaptic and intrinsic alterations enhance seizure susceptibility of the subiculum also in the absence of classical AHS.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have