Abstract

The subdifferential calculus for the expectation of nonsmooth random integrands involves many fundamental and challenging problems in stochastic optimization. It is known that for Clarke regular integrands, the Clarke subdifferential of the expectation equals the expectation of their Clarke subdifferential. In particular, this holds for convex integrands. However, little is known about the calculation of Clarke subgradients for the expectation of non-regular integrands. The focus of this contribution is to approximate Clarke subgradients for the expectation of random integrands by smoothing methods applied to the integrand. A framework for how to proceed along this path is developed and then applied to a class of measurable composite max integrands. This class contains non-regular integrands from stochastic complementarity problems as well as stochastic optimization problems arising in statistical learning.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.