Abstract

With the development of computer science, computational electromagnetics have also been widely used. Electromagnetic phenomena are closely related to eigenvalue problems. On the other hand, in order to solve the uncertainty of input data, the stochastic eigenvalue complementarity problem, which is a general formulation for the eigenvalue complementarity problem, has aroused interest in research. So, in this paper, we propose a new kind of stochastic eigenvalue complementarity problem. We reformulate the given stochastic eigenvalue complementarity problem as a system of nonsmooth equations with nonnegative constraints. Then, a projected smoothing Newton method is presented to solve it. The global and local convergence properties of the given method for solving the proposed stochastic eigenvalue complementarity problem are also given. Finally, the related numerical results show that the proposed method is efficient.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.