Abstract
We consider a boundary value problem in a strip, which is obtained by linearization of the two-dimensional problem of a stream about a slender cylinder, semisubmerged in a heavy fluid of finite depth; it is assumed that the cylinder has uniform, subcritical speed in the direction orthogonal to its generators. We discuss in particular the waveless statement of the problem, characterized by the asymptotic condition of vanishing flow oscillations at infinity. By suitable variational formulations of the problem, we find two classes of solutions, differing by their regularity properties. The most regular solutions exist for particular shapes of the cylinder's section and provide a velocity field which is everywhere continuous and bounded in the strip. The solutions of the other class exist for every (reasonably smooth) symmetric cylinder's profile and have finite energy, but are singular at two points on the strip boundary, representing the points where the free surface meets the cylinder's hull. The relevance of these results for the solvability of the nonlinear problem is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.