Abstract

The efficient production of gaseous oxygen used in many branches of industry to provide human life in anaerobic environments and in medicine (e.g., in the case of acute respiratory failure as one of COVID-19 complications) is challenging nowadays. The electrochemical oxygen pump (concentrator) with a solid polymer electrolyte representing an electrolyzer with air cathode depolarization is a very promising device, which provides the portable, safe, and efficient in situ production of highly pure oxygen at a twice lower energy consumption as compared to the water electrolyzer with a solid polymer electrolyte. The effect produced by the hydrophobization of a nanostructured oxygen reduction catalyst on the oxygen pump characteristics and the endurance of a cathode catalytic layer to flooding has been considered. The modification of a carbon support with polytetrafluoroethylene particles improves the removal of excessive water from the catalytic layer and increases the limiting current characterizing the appearance of transport limitations. The operational parameters (air temperature, flow rate, and pressure) also have an essential effect on the oxygen pump performance and must be optimized to improve water transport in catalytic layers, increase the operating current densities, and reduce the energy consumption in oxygen production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.