Abstract

Successful monitoring of technological processes using control of vibro-acoustic (VA) signals largely depends on the clarity of physical phenomena that determine the correlation between the functional parameters of the technological process and the diagnostic signs of vibration parameters. This article discusses such a relationship between vibration parameters and temperature in the core of technological processes. The experiments showed a stable pattern of changes in the parameters of VA signals with a change in the state of cutting tools in various technological processes associated with blade processing of workpieces. As such a parameter (Kf), the article considers the ratio of effective amplitudes in two frequency ranges: high-frequency and low-frequency. The most informative combination of frequency ranges is selected experimentally and depends on the dynamic characteristics of a particular elastic system. The paper gives examples of Kf changes for turning and grinding processes. To identify the nature of this phenomenon, experiments with the action of laser pulses on a steel plate with parallel recording of VA signals are considered. As a result, it is concluded that the Kf change is associated with a temperature increase in the frictional contact of the tool and the part when the cutting ability of the tool blade deteriorates. The work emphasizes that in the implementation of technological processes there are conditions that violate the described regularity. As such an example, the article shows an example of intense self-oscillations that changes the temperature regime in the contact zone. At the end of the work, it was shown that even during electric discharge machining, by changing the parameter Kf, it is possible to prevent short circuits and breaks in wire electrodes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call