Abstract

Electrical impedance spectroscopy (EIS) model is used to determine ion transport parameters. The transport parameters such as mobility, carrier density and diffusion coefficient of ions are the subject of great interest. The solution cast method is used to fabricate SPEs using polyvinyl alcohol (PVA) loaded with different amounts of sodium iodide (NaI). XRD deconvolution is used to separate the crystalline phase from amorphous phase. The degree of crystallinity is reduced with an increased amount of NaI. FTIR is used to investigate the polymer/salt interactions. To find out the circuit element, the Nyquist plots of impedance results are fitted with EEC modeling. The bulk resistance obtained from the EEC modeling is used to determine DC conductivity. At room temperature the maximum conductivity of 2.41×10-4S/cm is measured. The regions belong to the electrode polarization (EP) effect are distinguished form the spectra of dielectric constant and dielectric loss. Due to the buildup of charge carriers, the dielectric constant and loss are observed to be high at the low-frequency region. Obvious peaks are appeared in the tanδ and M“ spectra at high salt concentrations. Shifting of the tanδ peaks to the high frequency region are detected. The incomplete circular arc of the argand plot is shown the non-Debye relaxation. It is found that with increasing frequency, AC conductivity increased. The regions belong to the EP and DC contributions are differentiated in the AC spectra.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.