Abstract

Zn-Sb alloys are potential low-cost and non-toxic p-type thermoelectric materials for applications in the temperature range between 300 and 700 K. In this experiment, Zn-Sb alloy films were prepared by electron beam evaporation through an ion beam assisted deposition (IBAD). Our studies have confirmed that the structural phase, chemical composition, chemical binding, carrier concentration and microstructures of the film can indeed be effectively controlled by the voltage and current of the ion beam. Particularly, the carrier concentration of the film will rise along with the increase of the argon ion beam current. When the ion beam currents are set at 0.2–0.6 A, the carrier concentrations of the films can be controlled at around 1019–1020 cm−3, which fall within the optimal carrier concentration range for Zn-Sb based thermoelectric materials. The temperature dependence of Seebeck coefficient and the electrical conductivity of the films were measured to evaluate their thermoelectric performance. The results indicate that the film with Zn4Sb3 + ZnSb mixed phase will have better thermoelectric properties. A high power factor value of ~1280 μW/m-K2 is obtained in the films assisted by the ion beam current of 0.6 A. Our results demonstrate that the IBAD technique is extraordinary promising to fabricate Zn-Sb films with excellent thermoelectric performance and can be used to produce other potential thermoelectric materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call